Difference between revisions of "Random Walk Cave Generation"
Martin Read (talk | contribs) (Created page) |
|||
Line 47: | Line 47: | ||
#######.############################## | #######.############################## | ||
###################################### | ###################################### | ||
== See also == | |||
[[Dynamically Sized Maze]] | |||
[[Category:Developing]] | [[Category:Developing]] | ||
[[Category:Articles]] | [[Category:Articles]] | ||
[[Category:Maps]] | [[Category:Maps]] |
Latest revision as of 18:56, 3 October 2014
The random walk (a.k.a. "drunkard's walk") is a simple algorithm which can be used to generate a somewhat cave-like environment. Generating a level with a single drunkard's walk is guaranteed to produce a fully connected level, with a highly variable mix of narrow paths and open spaces.
For optimal results, this algorithm requires that the map be dynamically resized; without such measures, levels generated in this way can run into the edges with aesthetically unsatisfactory results.
Pseudocode representation
This is a basic pseudocode representation of the algorithm, which abstracts away such issues as dealing with the walk trying to run off the edge.
- initialize all map cells to walls.
- pick a map cell as the starting point.
- turn the selected map cell into floor.
- while insufficient cells have been turned into floor,
- take one step in a random direction.
- if the new map cell is wall,
- turn the new map cell into floor and increment the count of floor tiles.
Examples of output
The example layout below was generated using steps in the four traditional cardinal directions only. This algorithm could also be set up to use whatever other step scheme (eight-way, hex, etc.) the author prefers.
###################################### ##############.####################### ###########.##...##################### ########..#.##...##################### #########.........#################### ##########........#################### ###########......##################### ##########..<...#..################### ######.............################### ####.#..###.###..#.###..##########..## ####.#.####.######......##########..## ####.#.#......###......##########....# ####...###......#......#..#####......# #####...####....#....#.............### ##.....####........................### ###..######...........#........>.##### ###..#########....#####........#.##### ###..########..#######.......#...##### ####.########..######........#.....### ###....#######.######..##...##....#### ###....#######.######..############### ###.........##..###################### ###..#..........###################### ####........###.###################### ######...############################# ######...############################# ######..############################## #######.############################## ######################################