Difference between revisions of "Dynamically Sized Maze"
Line 49: | Line 49: | ||
== Algorithm == | == Algorithm == | ||
The algorithm is a simple [[recursive backtracker]] | The algorithm is a simple [[recursive backtracker]], starting at position {0,0} and growing into all directions. | ||
Since the maze can become very sparse, we use a two-dimensional hash table, instead of an array, to store the cells. | Since the maze can become very sparse, we use a two-dimensional hash table, instead of an array, to store the cells. | ||
1. Start carving from (x0,y0) into a specific direction. | |||
2. Calculate the new coordinates (x1,y1). | |||
3. Return if the new coordinates were already visited. | |||
4. Repeat the process from (x1,y1), trying all possible directions. | |||
In the normal algorithm the process will terminate when all coordinates were visited. | |||
In our case, however, there are no limits for growth, so the algorithm would continue forever. | |||
For that reason we defined a counter, and start backtracking after counter > width * height. This is our exit condition. | |||
== Source code == | == Source code == |
Revision as of 19:31, 2 October 2014
This article will describe a technique to build mazes that can grow in all directions.
Since the maze is not limited to a specific shape, it will end up with a very organic appearance.
Example
################ ## ############## ########################## ######################## ################ ################################ #################### ########## ########################## ############################ ################ ############################ ######################## ############## ## ###### ## ########## ############################ #################### ######## ######## ################ ## ## ## ################## ## ## ## ###### ################ ######################## #### ######## ############ ################## ## ## ###### ################ #### ######################## #### #### ######## ############ ## ## ## ################## ## ## ###### ################ ######################## #### ############ ######## ############ ################## ## ## ## ###### #################### ######################## #### #### ######## ######## ## ## ################## ## ## ## ###### ######## ############################ ################ ######## ## ## ## ################## ## ## ## ## ## ################################ ################ ## ################## ## ## ## ## ## #################################### #### #### #### ## ## ## ## ## ## ## ## ## ## ## ## ## #### #### #### #### #### #### ## ## ## ## ## ## ## ## ## ## ## ## #### #### #### #################### ## ## ## ## ## ## ## ## ######## ######################## #### ############ ############ ## ## ########## ## ## ## ## ## ## ## #### ######################## #### #### #### ## ## ## ############## ## ## ## ## #### ################ ######################## #### ############ ################## ## ## ## ## #### ############################ ######## #### #### ## ## ## ## ## ########################## ## ## ## ## ######################################################## #### #### ######################################################## ## ## ## ################################################################ ################################################################ ## ## ## ## ## ####################################################################################
Algorithm
The algorithm is a simple recursive backtracker, starting at position {0,0} and growing into all directions.
Since the maze can become very sparse, we use a two-dimensional hash table, instead of an array, to store the cells.
1. Start carving from (x0,y0) into a specific direction. 2. Calculate the new coordinates (x1,y1). 3. Return if the new coordinates were already visited. 4. Repeat the process from (x1,y1), trying all possible directions.
In the normal algorithm the process will terminate when all coordinates were visited.
In our case, however, there are no limits for growth, so the algorithm would continue forever.
For that reason we defined a counter, and start backtracking after counter > width * height. This is our exit condition.
Source code
#!/usr/bin/env perl
use strict;
use warnings;
no warnings 'recursion';
use List::Util qw/shuffle/;
# Command-line options
my $WIDTH = $ARGV[0] || 30;
my $HEIGHT = $ARGV[1] || 20;
my $SEED = $ARGV[2] || time();
srand($SEED);
# Constants
my @DIRECTIONS = qw/N S E W/;
my %DELTA = (
y => { N => -1, S => 1, E => 0, W => 0 },
x => { N => 0, S => 0, E => 1, W => -1 },
);
my %OPPOSITE = ( N => 'S', S => 'N', E => 'W', W => 'E', );
# Variables
my $map = {};
my $count = 0;
###
main();
###
sub main {
carve( 0, 0, 'E' );
draw( 0, 0 );
print "$0 $WIDTH $HEIGHT $SEED # resulting in $count cells\n";
}
sub carve {
my ( $x0, $y0, $direction ) = @_;
my $x1 = $x0 + $DELTA{x}{$direction};
my $y1 = $y0 + $DELTA{y}{$direction};
return if defined $map->{$y1}{$x1}; # already visited
$map->{$y0}{$x0}{$direction} = 1;
$map->{$y1}{$x1} = { $OPPOSITE{$direction} => 1 };
$count++;
return if $count > $WIDTH * $HEIGHT;
for my $new_direction ( shuffle @DIRECTIONS ) {
carve( $x1, $y1, $new_direction );
}
}
sub draw {
my ( $x0, $y0 ) = @_;
for my $y ( $y0 - $HEIGHT / 2 .. $y0 + $HEIGHT / 2 ) {
my ( $line1, $line2 ) = ( '', '' );
for my $x ( $x0 - $WIDTH / 2 .. $y0 + $WIDTH / 2 ) {
if ( ref $map->{$y}{$x} ) {
$line1 .= $map->{$y}{$x}{E} ? ' ' : ' ##';
$line2 .= $map->{$y}{$x}{S} ? ' ' : '####';
}
else {
$line1 .= '####';
$line2 .= '####';
}
}
print "$line1\n$line2\n";
}
}